Math 155, Lecture Notes-Bonds

Name

Section 9.6 The Ratio and Root Tests

The Ratio and Root test will test for absolute convergence. The Ratio Test is useful for studying series that have <u>factorials</u>, or <u>exponentials</u>. The Root Test is useful for studying series that have <u>nth powers</u>.

Ex. 1: Determine the convergence or divergence of the series: $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}4}{(2n)!}$

Ex. 2: Determine the convergence or divergence of the series: $\sum_{n=1}^{\infty} \frac{n^n}{n!}$

Ex. 3: Determine the convergence or divergence of the series:
$$\sum_{n=1}^{\infty} n \left(\frac{3}{2}\right)^n$$

Ex. 4: Determine the convergence or divergence of the series: $\sum_{n=0}^{\infty} \frac{3^n}{(n+1)^n}$

THEOREM 9.18 Root Test

Let Σa_n be a series. **1.** Σa_n converges absolutely if $\lim_{n \to \infty} \sqrt[n]{|a_n|} < 1$. **2.** Σa_n diverges if $\lim_{n \to \infty} \sqrt[n]{|a_n|} > 1$ or $\lim_{n \to \infty} \sqrt[n]{|a_n|} = \infty$. **3.** The Root Test is inconclusive if $\lim_{n \to \infty} \sqrt[n]{|a_n|} = 1$. **Ex. 5:** Determine the convergence or divergence of the series: $\sum_{n=1}^{\infty} \left[\frac{\ln(n)}{n}\right]^n$

Ex. 6: Determine the convergence or divergence of the series: $\sum_{n=1}^{\infty} \left(\frac{-3n}{2n+1}\right)^{3n}$

Guidelines for Testing a Series for Convergence or Divergence

- **1.** Does the *n*th term approach 0? If not, the series diverges.
- **2.** Is the series one of the special types—geometric, *p*-series, telescoping, or alternating?
- 3. Can the Integral Test, the Root Test, or the Ratio Test be applied?
- 4. Can the series be compared favorably to one of the special types?

Test	Series	Condition(s) of Convergence	Condition(s) of Divergence	Comment
<i>n</i> th-Term	$\sum_{n=1}^{\infty} a_n$		$\lim_{n\to\infty}a_n\neq 0$	This test cannot be used to show convergence.
Geometric Series	$\sum_{n=0}^{\infty} ar^n$	r < 1	$ r \ge 1$	Sum: $S = \frac{a}{1-r}$
Telescoping Series	$\sum_{n=1}^{\infty} (b_n - b_{n+1})$	$\lim_{n\to\infty}b_n=L$		Sum: $S = b_1 - L$
p-Series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	<i>p</i> > 1	$p \leq 1$	
Alternating Series	$\sum_{n=1}^{\infty} (-1)^{n-1} a_n$	$0 < a_{n+1} \le a_n$ and $\lim_{n \to \infty} a_n = 0$		Remainder: $ R_N \le a_{N+1}$

Summary of Tests for Series

Summary of Tests for Series

Test	Series	Condition(s) of Convergence	Condition(s) of Divergence	Comment
Integral (<i>f</i> is continuous, positive, and decreasing)	$\sum_{n=1}^{\infty} a_n,$ $a_n = f(n) \ge 0$	$\int_{1}^{\infty} f(x) dx \text{ converges}$	$\int_{1}^{\infty} f(x) dx \text{ diverges}$	Remainder: $0 < R_N < \int_N^\infty f(x) dx$
Root	$\sum_{n=1}^{\infty} a_n$	$\lim_{n\to\infty} \sqrt[p]{ a_n } < 1$	$\lim_{n\to\infty}\sqrt[n]{ a_n } > 1$	Test is inconclusive if $\lim_{n \to \infty} \sqrt[n]{ a_n } = 1.$
Ratio	$\sum_{n=1}^{\infty} a_n$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right < 1$	$\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n}\right > 1$	Test is inconclusive if $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = 1.$
Direct Comparison $(a_n, b_n > 0)$	$\sum_{n=1}^{\infty} a_n$	$0 < a_n \le b_n$ and $\sum_{n=1}^{\infty} b_n$ converges	$0 < b_n \le a_n$ and $\sum_{n=1}^{\infty} b_n$ diverges	
Limit Comparison $(a_n, b_n > 0)$	$\sum_{n=1}^{\infty} a_n$	$\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$ and $\sum_{n=1}^{\infty} b_n$ converges	$\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$ and $\sum_{n=1}^{\infty} b_n$ diverges	

Ex. 7: Determine the convergence or divergence of the following series, and state the most efficient test that would show your result:

(a)
$$\sum_{n=1}^{\infty} \frac{n+1}{3n+1}$$

(b)
$$\sum_{n=1}^{\infty} \left(\frac{\pi}{6}\right)^n$$

(c)
$$\sum_{n=1}^{\infty} n e^{-n^2}$$

(d)
$$\sum_{n=1}^{\infty} \frac{1}{3n+1}$$

(e)
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{3}{4n+1}\right)$$

(f)
$$\sum_{n=1}^{\infty} \frac{n!}{10^n}$$

(g)
$$\sum_{n=1}^{\infty} \left(\frac{n+1}{2n+1}\right)^n$$

Ex. 8: Determine the convergence or divergence of the series:

Consider
$$\sum_{n=1}^{\infty} a_n$$
, where $a_1 = \frac{1}{3}$ and $a_{n+1} = \left(1 + \frac{1}{n}\right)a_n$.