Math 155, Lecture Notes- Bonds
Name \qquad

Section 9.6 The Ratio and Root Tests

The Ratio and Root test will test for absolute convergence. The Ratio Test is useful for studying series that have factorials, or exponentials. The Root Test is useful for studying series that have nth powers.

THEOREM 9.I7 Ratio Test

Let $\sum a_{n}$ be a series with nonzero terms.

1. $\sum a_{n}$ converges absolutely if $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$.
2. $\sum a_{n}$ diverges if $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|>1$ or $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\infty$.
3. The Ratio Test is inconclusive if $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$.

Ex. 1: Determine the convergence or divergence of the series: $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 4}{(2 n)!}$

Ex. 2: Determine the convergence or divergence of the series: $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$

Ex. 3: Determine the convergence or divergence of the series: $\sum_{n=1}^{\infty} n\left(\frac{3}{2}\right)^{n}$

Ex. 4: Determine the convergence or divergence of the series: $\sum_{n=0}^{\infty} \frac{3^{n}}{(n+1)^{n}}$

THEOREM 9.18 Root Test

Let $\sum a_{n}$ be a series.

1. $\sum a_{n}$ converges absolutely if $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}<1$. 2. $\sum a_{n}$ diverges if $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}>1$ or $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\infty$.
2. The Root Test is inconclusive if $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=1$.

Ex. 5: Determine the convergence or divergence of the series: $\sum_{n=1}^{\infty}\left[\frac{\ln (n)}{n}\right]^{n}$

Ex. 6: Determine the convergence or divergence of the series: $\sum_{n=1}^{\infty}\left(\frac{-3 n}{2 n+1}\right)^{3 n}$

Guidelines for Testing a Series for Convergence or Divergence

1. Does the nth term approach 0 ? If not, the series diverges.
2. Is the series one of the special types-geometric, p-series, telescoping, or alternating?
3. Can the Integral Test, the Root Test, or the Ratio Test be applied?
4. Can the series be compared favorably to one of the special types?

Summary of Tests for Series

Test	Series	Condition(s) of Convergence	Condition(s) of Divergence	Comment
n th-Term	$\sum_{n=1}^{\infty} a_{n}$	$\|r\|<1$	$\lim _{n \rightarrow \infty} a_{n} \neq 0$	This test cannot be used to show convergence.
Geometric Series	$\sum_{n=0}^{\infty} a r^{n}$	$\|r\| \geq 1$	Sum: $S=\frac{a}{1-r}$	
Telescoping Series	$\sum_{n=1}^{\infty}\left(b_{n}-b_{n+1}\right)$	$\lim _{n \rightarrow \infty} b_{n}=L$	$p \leq 1$	Sum: $S=b_{1}-L$
p-Series	$\sum_{n=1}^{\infty} \frac{1}{n^{p}}$	$p>1$		
Alternating Series	$\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}$	$0<a_{n+1} \leq a_{n}$ and $\lim _{n \rightarrow \infty} a_{n}=0$		Remainder: $\left\|R_{N}\right\| \leq a_{N+1}$

Summary of Tests for Series

Test	Series	Condition(s) of Convergence	Condition(s) of Divergence	Comment
Integral (f is continuous, positive, and decreasing)	$\begin{aligned} & \sum_{n=1}^{\infty} a_{n}, \\ & a_{n}=f(n) \geq 0 \end{aligned}$	$\int_{1}^{\infty} f(x) d x \text { converges }$	$\int_{1}^{\infty} f(x) d x \text { diverges }$	Remainder: $0<R_{N}<\int_{N}^{\infty} f(x) d x$
Root	$\sum_{n=1}^{\infty} a_{n}$	$\lim _{n \rightarrow \infty} \sqrt[n]{\left\|a_{n}\right\|}<1$	$\lim _{n \rightarrow \infty} \sqrt[n]{\left\|a_{n}\right\|}>1$	Test is inconclusive if $\lim _{n \rightarrow \infty} \sqrt[n]{\left\|a_{n}\right\|}=1$
Ratio	$\sum_{n=1}^{\infty} a_{n}$	$\lim _{n \rightarrow \infty}\left\|\frac{a_{n+1}}{a_{n}}\right\|<1$	$\lim _{n \rightarrow \infty}\left\|\frac{a_{n+1}}{a_{n}}\right\|>1$	Test is inconclusive if $\lim _{n \rightarrow \infty}\left\|\frac{a_{n+1}}{a_{n}}\right\|=1$
Direct Comparison $\left(a_{n}, b_{n}>0\right)$	$\sum_{n=1}^{\infty} a_{n}$	$\begin{aligned} & 0<a_{n} \leq b_{n} \\ & \text { and } \sum_{n=1}^{\infty} b_{n} \text { converges } \end{aligned}$	$\begin{aligned} & 0<b_{n} \leq a_{n} \\ & \text { and } \sum_{n=1}^{\infty} b_{n} \text { diverges } \end{aligned}$	
Limit Comparison $\left(a_{n}, b_{n}>0\right)$	$\sum_{n=1}^{\infty} a_{n}$	$\begin{aligned} & \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L>0 \\ & \text { and } \sum_{n=1}^{\infty} b_{n} \text { converges } \end{aligned}$	$\begin{aligned} & \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L>0 \\ & \text { and } \sum_{n=1}^{\infty} b_{n} \text { diverges } \end{aligned}$	

Ex. 7: Determine the convergence or divergence of the following series, and state the most efficient test that would show your result:
(a) $\sum_{n=1}^{\infty} \frac{n+1}{3 n+1}$
(b) $\sum_{n=1}^{\infty}\left(\frac{\pi}{6}\right)^{n}$
(c) $\sum_{n=1}^{\infty} n e^{-n^{2}}$
(d) $\sum_{n=1}^{\infty} \frac{1}{3 n+1}$
(e) $\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{3}{4 n+1}\right)$
(f) $\sum_{n=1}^{\infty} \frac{n!}{10^{n}}$
(g) $\sum_{n=1}^{\infty}\left(\frac{n+1}{2 n+1}\right)^{n}$

Ex. 8: Determine the convergence or divergence of the series:
Consider $\sum_{n=1}^{\infty} a_{n}$, where $a_{1}=\frac{1}{3}$ and $a_{n+1}=\left(1+\frac{1}{n}\right) a_{n}$.

